Closing Wed: HW_1A, 1B Closing Fri: HW_1C Check out the first newsletter!

4.9 Antiderivatives (continued) Example:

$$f''(x) = \frac{3}{\sqrt{x}}$$
$$f(1) = 0, f(4) = 1$$
Find $f(x)$.

Example:

Ron *steps off* the 10 meter high dive at his local pool. Find a formula for his height above the water.

(Assume his acceleration is a constant 9.8 m/s² downward)

5.1 Defining Area (Riemann sums)

Calculus is based on limiting processes that "approach" the exact answer to a rate question.

In Calculus I, you defined f'(x) = `slope of the tangent at x' $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

In Calculus II, we will see that antiderivatives are related to the area `under' a graph n

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$$

 $R_{10} = 0.3025$

Riemann sums set up: We build a procedure to get better and better approximations of the area "under" f(x).

- 1. Break into *n* subintervals. $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$
- 2. Draw *n* rectangles. Area of each rectangle = (height)(width) = $f(x_i^*)\Delta x$
- 3. Add up rectangle areas.

Example:

Approx. the area under $f(x) = x^3$ from x = 0 to x = 1 using n = 3 subdivisions and *right-endpoints* to find the heights. You do:

Approx. the area under $f(x) = x^3$ from x = 0 to x = 1 using n = 4 subdivisions and *left-endpoints* to find the heights. I did this again with 100 subdivisions, then 1000, then 10000.

Here is a summary of my findings:

n	R_n	L _n 0.140625	
4	0.390625		
5	0.36	0.16	
10	0.3025	0.2025	
100	0.255025	0.245025	
1000	0.25050025	0.24950025	
10000 0.2499500025		0.2500500025	

General Pattern: (right-endpoint) *Adding up the rectangle areas* For $f(x) = x^3$ on x = 0 to x = 1.

Sum =
$$\sum_{i=1}^{n} x_i^3 \Delta x = \sum_{i=1}^{n} \left(\frac{i}{n}\right)^3 \frac{1}{n}$$

Exact Area = $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^3 \frac{1}{n}$

$$\Delta x = \frac{1-0}{n} = \frac{1}{n}$$

$$x_i = 0 + i\frac{1}{n} = \frac{i}{n}$$
Height = $f(x_i) = x_i^3 = \left(\frac{i}{n}\right)^3$
Area = $f(x_i)\Delta x = x_i^3\Delta x = \left(\frac{i}{n}\right)^3\frac{1}{n}$

Example: Approximate the area under $f(x) = 1 + x^2$ from x = 2to x = 3 using n = 4 Riemann sums and right endpoints.

What is the general pattern in terms of *n*?

$$\Delta x =$$

$$x_i = \sum_{i=1}^n f(x_i) \Delta x =$$

Another Example:

Using sigma notation, write down the general Riemann sum definition of the area from x = 5 to x = 7 under

$$f(x) = 3x + \sqrt{x}$$

$$\Delta x = \frac{b-a}{n} =$$

$$x_i = a + i \Delta x$$

$$\lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x =$$

Velocity/Distance & Reimann Sums

When velocity is a *constant*:

Distance = Velocity · Time

Example:

You are accelerating in a car. You get

the following measurements:

t (sec)	0	0.5	1.0	1.5	2.0
v(t) (ft/s)	0	6.2	10.8	14.9	18.1

Estimate the distance traveled by the car traveled from 0 to 2 seconds.

5.2 The Definite Integral

Def'n: We define the **definite integral of** f(x) from x = a to x = b by $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$, where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

Basic Integral Rules:
1.
$$\int_{a}^{b} c \, dx = (b-a)c$$

2. $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$
3. $\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) dx$
and
 $\int_{a}^{b} f(x) + g(x) \, dx$
 $= \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) \, dx$
4. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
Examples:
1. $\int_{4}^{10} 5 \, dx =$
2. $\int_{0}^{3} x^{2} dx + \int_{3}^{7} x^{2} dx =$
3. $\int_{0}^{4} 5x + 3 \, dx =$
 $= \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) \, dx$
4. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
4. $\int_{3}^{1} x^{3} dx = -\int_{1}^{3} x^{3} \, dx$

Example: Consider the area under f(x) = sin(x) + 2on the interval x = 0 to $x = 2\pi$.

- (a) What is the max of f(x)? (label M)(b) What is the min of f(x)? (label m)
- (c) Draw one rectangle that contains all the shaded area? What can you conclude?
- (d) Draw one rectangle that is completely inside the shaded area? Conclusion?

