Closing Wed: HW_1A, 1B
Closing Fri: HW_1C
Check out the first newsletter!

4.9 Antiderivatives (continued)

Example:

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{3}{\sqrt{x}} \\
& f(1)=0, f(4)=1
\end{aligned}
$$

Find $f(x)$.

Example:

Ron steps off the 10 meter high dive at his local pool. Find a formula for his height above the water.
(Assume his acceleration is a constant $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward)

5.1 Defining Area (Riemann sums)

Calculus is based on limiting processes that "approach" the exact answer to a rate question.

In Calculus I, you defined $\mathrm{f}^{\prime}(\mathrm{x})=$ `slope of the tangent at x^{\prime}

$$
=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Calc. I
Visual:

Calc. II Visual:

$R_{10}=0.3025$

Riemann sums set up:
We build a procedure to get better and better approximations of the area "under" $f(x)$.

1. Break into n subintervals.

$$
\Delta x=\frac{b-a}{n} \text { and } x_{i}=a+i \Delta x
$$

2. Draw n rectangles.

Area of each rectangle $=$ $($ height $)($ width $)=f\left(x_{i}^{*}\right) \Delta x$
3. Add up rectangle areas.

Example:

Approx. the area under $f(x)=x^{3}$ from $\mathrm{x}=0$ to $\mathrm{x}=1$ using $\mathrm{n}=3$
subdivisions and right-endpoints to find the heights.

You do:
Approx. the area under $f(x)=x^{3}$ from $\mathrm{x}=0$ to $\mathrm{x}=1$ using $\mathrm{n}=4$
subdivisions and left-endpoints to find the heights.

I did this again with 100
subdivisions, then 1000, then 10000.

Here is a summary of my findings:

n	R_{n}	L_{n}
4	0.390625	0.140625
5	0.36	0.16
10	0.3025	0.2025
100	0.255025	0.245025
1000	0.25050025	0.24950025
10000	0.2499500025	0.2500500025

General Pattern: (right-endpoint) For $f(x)=x^{3}$ on $\mathrm{x}=0$ to $\mathrm{x}=1$.

$$
\begin{aligned}
& \Delta x=\frac{1-0}{n}=\frac{1}{n} \\
& x_{i}=0+i \frac{1}{n}=\frac{i}{n}
\end{aligned}
$$

Height $=f\left(x_{i}\right)=x_{i}^{3}=\left(\frac{i}{n}\right)^{3}$
Area $=f\left(x_{i}\right) \Delta x=x_{i}^{3} \Delta x=\left(\frac{i}{n}\right)^{3} \frac{1}{n}$

Adding up the rectangle areas
Sum $=\sum_{i=1}^{n} x_{i}^{3} \Delta x=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}$
Exact Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}$

Example: Approximate the area under $f(x)=1+x^{2}$ from $x=2$ of n ? to $x=3$ using $n=4$ Riemann sums and right endpoints.
$\Delta x=$

$$
x_{i}=
$$

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=
$$

Another Example:

Using sigma notation, write down the general Riemann sum definition of the area from $\mathrm{x}=5$ to $\mathrm{x}=7$ under

$$
f(x)=3 x+\sqrt{x}
$$

$\Delta x=\frac{b-a}{n}=$
$x_{i}=a+i \Delta x$
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=$

Velocity/Distance \& Reimann Sums

When velocity is a constant:
Distance $=$ Velocity \cdot Time
Example:
You are accelerating in a car. You get the following measurements:

$\mathrm{t}(\mathrm{sec})$	0	0.5	1.0	1.5	2.0
$\mathrm{v}(\mathrm{t})(\mathrm{ft} / \mathrm{s})$	0	6.2	10.8	14.9	18.1

Estimate the distance traveled by the car traveled from 0 to 2 seconds.

5.2 The Definite Integral

Def'n:

We define the definite integral of
$f(x)$ from $x=a$ to $x=b$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$.

Basic Integral Rules:
Examples:

1. $\int_{a}^{b} c d x=(b-a) c$
2. $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x \quad 2 . \int_{0}^{3} x^{2} d x+\int_{3}^{7} x^{2} d x=$
3. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
$\int_{a}^{b} f(x)+g(x) d x$
$=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
4. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
5. $\int_{3}^{1} x^{3} d x=-\int_{1}^{3} x^{3} d x$

Note on quick bounds (HW_1C: 9,10)

$$
m(b-a) \leq \int_{a}^{b} \mathrm{f}(\mathrm{x}) d x \leq M(b-a)
$$

Example: Consider the area under

$$
f(x)=\sin (x)+2
$$

on the interval $x=0$ to $x=2 \pi$.
(a) What is the max of $f(x)$? (label M)
(b) What is the min of $f(x)$? (label m)
(c) Draw one rectangle that contains all the shaded area? What can you conclude?
(d) Draw one rectangle that is completely inside the shaded area? Conclusion?

